
disassembler

disassembler ii

COLLABORATORS

TITLE :

disassembler

ACTION NAME DATE SIGNATURE

WRITTEN BY January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

disassembler iii

Contents

1 disassembler 1

1.1 disassembler.doc . 1

1.2 disassembler.library/--Background-- . 1

1.3 disassembler.library/Disassemble . 1

1.4 disassembler.library/FindStartPosition . 3

disassembler 1 / 4

Chapter 1

disassembler

1.1 disassembler.doc

--Background--

FindStartPosition()

Disassemble()

1.2 disassembler.library/--Background--

PURPOSE

The purpose of this library is to provide an easy to use and
powerful disassembler. It knows all MC68K processors starting with
the 68000 up to the 68060, FPU and MMU instructions.

The code is MMU aware, i.e. won’t try to access invalid or
non-available memory, and makes use of the mmu.library if it is
available. It will even work without the library, but it won’t be
able to validate its accesses and might, therefore, access invalid
memory if the addresses passed in are incorrect.

The library functions are interrupt and supervisor callable,
provided your functions - and the PutProc function passed in - is.

1.3 disassembler.library/Disassemble

NAME
Disassemble - disassemble MC68K object code to assembler

SYNOPSIS
nextpc = Disassemble (disdata);
d0 a0

disassembler 2 / 4

APTR Disassemble (struct DisData *);

FUNCTION
Disassembles the memory between the ds_From and ds_Upto fields
writing the disassembled data out using the ds_PutProc function.
The PC position is marked by a "*".

INPUTS
disdata - A structure specifying the details of the request.

It has to be filled out like the following:

struct DisData {
APTR ds_From;
APTR ds_UpTo;
APTR ds_PC;
void *ds_PutProc;
APTR ds_UserData;
APTR ds_UserBase;
UWORD ds_Truncate;
UWORD ds_reserved;

};

ds_From is the memory location to start the disassembly from. This

MUST be an even address.
ds_UpTo is the (exclusive) end of the memroy region to disassemble.

ds_PC is a special address which is marked by an asterisk ("*") on
disassembly. This feature can be used to mark the position of the
PC.

void *PutProc is actually a function pointer. It is not declared as
such to avoid unnecessary casting between compilers. Your code is
called like this:

register d0 - the ASCII code to print. Line ends are marked with a
single line feed LF = 0x0a.

register a1 - the contents of the ds_UserData field of the structure
above.

register a3 - ditto.
register a4 - the contents of ds_UserBase. This is most useful for

passing the pointer to the data space when using C or
other high level languages.

On exit, the routine may pass an updated a3 register back to the
library which will be passed in a1 and a3 next time, similar to
the exec RawDoFmt() function.

ds_UserData is the contents of registers a1 and a3 upon calling your
routine. They are for your private use.

ds_UserBase is loaded to register a4 before calling the put procedure.
Should be setup to be the _LinkerDB if the near data model is used.

ds_Truncate is the maximal line length to output. If this field is,
for example, set to 80, longer lines will be truncated by the library
to fit on the screen. If set to zero, no truncation takes place.

disassembler 3 / 4

ds_reserved must be set to zero to support future extensions.

RESULTS
an updated pointer where the disassembly stopped. If you pass this
pointer back in as "ds_From", the disassembler will automatically
continue at the right place.

NOTES
this call will make use of the mmu.libary if available. It won’t
access illegal memory or I/O space, provided the mmu table is
setup correctly.

This routine is interrupt and supervisor callable, provided your
provided bs_PutProc is. This makes this library function ideal for
debugging tools and monitors.

BUGS

SEE ALSO
exec.library/RawDoFmt(), libraries/disassembler.h

1.4 disassembler.library/FindStartPosition

NAME
FindStartPosition - find an anchor point for disassembly

SYNOPSIS
start = FindStartPosition (pc , min , max);
d0 a0 d0 d1

APTR FindStartPosition (APTR , UWORD min , UWORD max);

FUNCTION
Given a PC address, this routine tries to find a useable address
to start the disassembly from, in a way that the PC address is
correctly included in the disassembly and that no, or as few illegal
instructions as possible show up. The code in front of the PC is
investigated, and a location between pc-min and pc-max is
returned, with min<max. If no suitable address was found, the pc
passed in is returned.

This makes this function an "go backwards" disassembly tool. This
is usually problematic due to the CISC design of the MC68K, namely
having instructions of various lengths.

INPUTS
pc - the anchor point. This is supposed to be known to be a

valid address with a valid instruction. This instruction
is guaranteed to show up in a disassembly started at the
resulting address.

min - the minimum distance from the PC to start the search.
Note that this must be postive, it will be subtracted
from the "pc".

max - the maximal distance where the search will stop. This is

disassembler 4 / 4

again a positive number.

RESULTS
An address between pc-max and pc-min which, when used as start
address for

Disassemble()
, will make the requested "pc" instruction

part of the output stream.

NOTES
The purpose of this function is to find an anchor point for
disassembling code "around" a given location. Use, as first step,
the desired location to this procedure, then start disassembling
at the result, using about max*2 bytes.

BUGS

SEE ALSO

Disassemble()
, libraries/disassembler.h

	disassembler
	disassembler.doc
	disassembler.library/--Background--
	disassembler.library/Disassemble
	disassembler.library/FindStartPosition

